942 research outputs found

    The impact of temporal synchronisation imprecision on TRF analyses

    Get PDF
    Human sensory perception requires our brains to extract, encode, and process multiple properties of the sensory input. In the context of continuous sensory signals, such as speech and music, the measured electrical neural activity synchronises to properties such as the acoustic envelope, a phenomenon referred to as neural tracking. The ability of measuring neural tracking with non-invasive neurophysiology constitutes an exciting new opportunity for applied research. For example, it enables the objective assessment of cognitive functions in challenging cohorts and environments by using pleasant, everyday tasks, such as watching videos. However, neural tracking has been mostly studied in controlled, laboratory environments guaranteeing precise synchronisation between the neural signal and the corresponding labels (e.g., speech envelope). There exist various challenges that could impact such a temporal precision in, for instance, out-of-lab scenarios, such as technology (e.g., wireless data acquisition), mobility requirements (e.g., clinical scenarios), and the task (e.g., imagery). Aiming to address this type of challenge, we focus on the predominant scenario of continuous sensory experiments involving listening to speech and music. First a temporal response function analysis is presented on two different datasets to assess the impact of trigger imprecision. Second, a proof-of-concept re-alignment methodology is proposed to determine potential issues with the temporal synchronisation. Finally, a use-case study is presented that demonstrates neural tracking measurements in a challenging scenario involving older individuals with neurocognitive decline in care homes. Significance Statement Human cognitive functions can be studied by measuring neural tracking with non-invasive neurophysiology as participants perform pleasant, everyday tasks, such as listening to music. However, while recent work has encouraged the use of this approach in applied research, it remains unclear how robust neural tracking measurements can be when considering the methodological constraints of applied scenarios. This study determines the impact of a key factor for the measurement of neural tracking: the temporal precision of the neural recording. The results provide clear guidelines for future research, indicating what level of imprecision can be tolerated for measuring neural tracking with speech and music listening tasks in both laboratory and applied settings. Furthermore, the study provides a strategy to assess the impact of imprecision in the synchronisation of the neural recording, thus developing new tools for applied neuroscience

    Connexin36 (Cx36) expression and protein detection in the mouse carotid body and myenteric plexus

    Get PDF
    Although connexin36 (Cx36) has been studied in several tissues, it is notable that no data are available on Cx36 expression in the carotid body and the intestine. The present study was undertaken to evaluate using immunohistochemistry, PCR and Western blotting procedures, whether Cx36 was expressed in the mouse carotid body and in the intestine at ileum and colon level. In the carotid body, Cx36 was detected as diffuse punctate immunostaining and as protein by Western blotting and mRNA by RT-PCR. Cx36 punctate immunostaining was also evident in the intestine with localization restricted to the myenteric plexus of both the ileum and the colon, and this detection was also confirmed by Western blotting and RT-PCR. All the data obtained were validated using Cx36 knockout mice. Taken together the present data on localization of Cx36 gap-junctions in two tissues of neural crest-derived neuroendocrine organs may provide an anatomical basis for future functional investigations

    On the evolution of decoys in plant immune systems

    Full text link
    The Guard-Guardee model for plant immunity describes how resistance proteins (guards) in host cells monitor host target proteins (guardees) that are manipulated by pathogen effector proteins. A recently suggested extension of this model includes decoys, which are duplicated copies of guardee proteins, and which have the sole function to attract the effector and, when modified by the effector, trigger the plant immune response. Here we present a proof-of-principle model for the functioning of decoys in plant immunity, quantitatively developing this experimentally-derived concept. Our model links the basic cellular chemistry to the outcomes of pathogen infection and resulting fitness costs for the host. In particular, the model allows identification of conditions under which it is optimal for decoys to act as triggers for the plant immune response, and of conditions under which it is optimal for decoys to act as sinks that bind the pathogen effectors but do not trigger an immune response.Comment: 15 pages, 6 figure

    Interfacing single-atom catalysis with continuous-flow organic electrosynthesis

    Get PDF
    The global warming crisis has sparked a series of environmentally cautious trends in chemistry, allowing us to rethink the way we conduct our synthesis, and to incorporate more earth-abundant materials in our catalyst design. “Single-atom catalysis” has recently appeared on the catalytic spectrum, and has truly merged the benefits that homogeneous and heterogeneous analogues have to offer. Further still, the possibility to activate these catalysts by means of a suitable electric potential could pave the way for a true integration of diverse synthetic methodologies and renewable electricity. Despite their esteemed benefits, single-atom electrocatalysts are still limited to the energy sector (hydrogen evolution reaction, oxygen reduction, etc.) and numerous examples in the literature still invoke the use of precious metals (Pd, Pt, Ir, etc.). Additionally, batch electroreactors are employed, which limit the intensification of such processes. It is of paramount importance that the field continues to grow in a more sustainable direction, seeking new ventures into the space of organic electrosynthesis and flow electroreactor technologies. In this piece, we discuss some of the progress being made with earth abundant homogeneous and heterogeneous electrocatalysts and flow electrochemistry, within the context of organic electrosynthesis, and highlight the prospects of alternatively utilizing single-atom catalysts for such applications

    Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns

    Get PDF
    Studying the vertical distribution of aerosol particle physical and chemical properties in the troposphere is essential to understand the relative importance of local emission processes vs. long-range transport for column-integrated aerosol properties (e.g. the aerosol optical depth, AOD, affecting regional climate) as well as for the aerosol burden and its impacts on air quality at the ground. The main objective of this paper is to investigate the transport of desert dust in the middle troposphere and its intrusion into the planetary boundary layer (PBL) over the Po Valley (Italy), a region considered one of the greatest European pollution hotspots for the frequency that particulate matter (PM) limit values are exceeded. Events of mineral aerosol uplift from local (soil) sources and phenomena of hygroscopic growth at the ground are also investigated, possibly affecting the PM concentration in the region as well. During the PEGASOS 2012 field campaign, an integrated observing–modelling system was set up based on near-surface measurements (particle concentration and chemistry), vertical profiling (backscatter coefficient profiles from lidar and radiosoundings) and Lagrangian air mass transport simulations by FLEXPART model. Measurements were taken at the San Pietro Capofiume supersite (44°39′ N, 11°37′ E; 11 m a.s.l.), located in a rural area relatively close to some major urban and industrial emissive areas in the Po Valley. Mt. Cimone (44°12′ N, 10°42′ E; 2165 m a.s.l.) WMO/GAW station observations are also included in the study to characterize regional-scale variability. Results show that, in the Po Valley, aerosol is detected mainly below 2000 m a.s.l. with a prevalent occurrence of non-depolarizing particles ( > 50 % throughout the campaign) and a vertical distribution modulated by the PBL daily evolution. Two intense events of mineral dust transport from northern Africa (19–21 and 29 June to 2 July) are observed, with layers advected mainly above 2000 m, but subsequently sinking and mixing in the PBL. As a consequence, a non-negligible occurrence of mineral dust is observed close to the ground (  ~7 % of occurrence during a 1-month campaign). The observations unambiguously show Saharan dust layers intruding the Po Valley mixing layer and directly affecting the aerosol concentrations near the surface. Finally, lidar observations also indicate strong variability in aerosol on shorter timescales (hourly). Firstly, these highlight events of hygroscopic growth of anthropogenic aerosol, visible as shallow layers of low depolarization near the ground. Such events are identified during early morning hours at high relative humidity (RH) conditions (RH  > 80 %). The process is observed concurrently with high PM1 nitrate concentration (up to 15 µg cm−3) and hence mainly explicable by deliquescence of fine anthropogenic particles, and during mineral dust intrusion episodes, when water condensation on dust particles could instead represent the dominant contribution. Secondly, lidar images show frequent events (mean daily occurrence of  ~ 22 % during the whole campaign) of rapid uplift of mineral depolarizing particles in afternoon–evening hours up to 2000 m a.s.l. height. The origin of such particles cannot be directly related to long-range transport events, being instead likely linked to processes of soil particle resuspension from agricultural lands

    Dyslexia detection from EEG signals using SSA component correlation and Convolutional Neural Networks

    Full text link
    Objective dyslexia diagnosis is not a straighforward task since it is traditionally performed by means of the intepretation of different behavioural tests. Moreover, these tests are only applicable to readers. This way, early diagnosis requires the use of specific tasks not only related to reading. Thus, the use of Electroencephalography (EEG) constitutes an alternative for an objective and early diagnosis that can be used with pre-readers. In this way, the extraction of relevant features in EEG signals results crucial for classification. However, the identification of the most relevant features is not straighforward, and predefined statistics in the time or frequency domain are not always discriminant enough. On the other hand, classical processing of EEG signals based on extracting EEG bands frequency descriptors, usually make some assumptions on the raw signals that could cause indormation loosing. In this work we propose an alternative for analysis in the frequency domain based on Singluar Spectrum Analysis (SSA) to split the raw signal into components representing different oscillatory modes. Moreover, correlation matrices obtained for each component among EEG channels are classfied using a Convolutional Neural network.Comment: 11 pages, 7 figures. Submitted to conferenc
    corecore